Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
PLOS global public health ; 2(8), 2022.
Article in English | EuropePMC | ID: covidwho-2258496

ABSTRACT

Background Most of the studies that have informed the public health response to the COVID-19 pandemic in Kenya have relied on samples that are not representative of the general population. We conducted population-based serosurveys at three Health and Demographic Surveillance Systems (HDSSs) to determine the cumulative incidence of infection with SARS-CoV-2. Methods We selected random age-stratified population-based samples at HDSSs in Kisumu, Nairobi and Kilifi, in Kenya. Blood samples were collected from participants between 01 Dec 2020 and 27 May 2021. No participant had received a COVID-19 vaccine. We tested for IgG antibodies to SARS-CoV-2 spike protein using ELISA. Locally-validated assay sensitivity and specificity were 93% (95% CI 88–96%) and 99% (95% CI 98–99.5%), respectively. We adjusted prevalence estimates using classical methods and Bayesian modelling to account for the sampling scheme and assay performance. Results We recruited 2,559 individuals from the three HDSS sites, median age (IQR) 27 (10–78) years and 52% were female. Seroprevalence at all three sites rose steadily during the study period. In Kisumu, Nairobi and Kilifi, seroprevalences (95% CI) at the beginning of the study were 36.0% (28.2–44.4%), 32.4% (23.1–42.4%), and 14.5% (9.1–21%), and respectively;at the end they were 42.0% (34.7–50.0%), 50.2% (39.7–61.1%), and 24.7% (17.5–32.6%), respectively. Seroprevalence was substantially lower among children (<16 years) than among adults at all three sites (p≤0.001). Conclusion By May 2021 in three broadly representative populations of unvaccinated individuals in Kenya, seroprevalence of anti-SARS-CoV-2 IgG was 25–50%. There was wide variation in cumulative incidence by location and age.

2.
Nat Commun ; 13(1): 7003, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2116500

ABSTRACT

Genomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared via GISAID to estimate the impact of sequencing intensity and turnaround times on variant detection in 189 countries. In the first two years of the pandemic, 78% of high-income countries sequenced >0.5% of their COVID-19 cases, while 42% of low- and middle-income countries reached that mark. Around 25% of the genomes from high income countries were submitted within 21 days, a pattern observed in 5% of the genomes from low- and middle-income countries. We found that sequencing around 0.5% of the cases, with a turnaround time <21 days, could provide a benchmark for SARS-CoV-2 genomic surveillance. Socioeconomic inequalities undermine the global pandemic preparedness, and efforts must be made to support low- and middle-income countries improve their local sequencing capacity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Genome, Viral/genetics , COVID-19/epidemiology , Pandemics , Genomics
3.
PLoS One ; 17(10): e0265478, 2022.
Article in English | MEDLINE | ID: covidwho-2079676

ABSTRACT

INTRODUCTION: The high proportion of SARS-CoV-2 infections that have remained undetected presents a challenge to tracking the progress of the pandemic and estimating the extent of population immunity. METHODS: We used residual blood samples from women attending antenatal care services at three hospitals in Kenya between August 2020 and October 2021and a validated IgG ELISA for SARS-Cov-2 spike protein and adjusted the results for assay sensitivity and specificity. We fitted a two-component mixture model as an alternative to the threshold analysis to estimate of the proportion of individuals with past SARS-CoV-2 infection. RESULTS: We estimated seroprevalence in 2,981 women; 706 in Nairobi, 567 in Busia and 1,708 in Kilifi. By October 2021, 13% of participants were vaccinated (at least one dose) in Nairobi, 2% in Busia. Adjusted seroprevalence rose in all sites; from 50% (95%CI 42-58) in August 2020, to 85% (95%CI 78-92) in October 2021 in Nairobi; from 31% (95%CI 25-37) in May 2021 to 71% (95%CI 64-77) in October 2021 in Busia; and from 1% (95% CI 0-3) in September 2020 to 63% (95% CI 56-69) in October 2021 in Kilifi. Mixture modelling, suggests adjusted cross-sectional prevalence estimates are underestimates; seroprevalence in October 2021 could be 74% in Busia and 72% in Kilifi. CONCLUSIONS: There has been substantial, unobserved transmission of SARS-CoV-2 in Nairobi, Busia and Kilifi Counties. Due to the length of time since the beginning of the pandemic, repeated cross-sectional surveys are now difficult to interpret without the use of models to account for antibody waning.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Antibodies, Viral , COVID-19/epidemiology , Cross-Sectional Studies , Female , Hospitals , Humans , Immunoglobulin G , Kenya/epidemiology , Pregnancy , Prenatal Care , Referral and Consultation , SARS-CoV-2 , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus
4.
Wellcome open research ; 6, 2021.
Article in English | EuropePMC | ID: covidwho-2046342

ABSTRACT

Policymakers in Africa need robust estimates of the current and future spread of SARS-CoV-2. We used national surveillance PCR test, serological survey and mobility data to develop and fit a county-specific transmission model for Kenya up to the end of September 2020, which encompasses the first wave of SARS-CoV-2 transmission in the country. We estimate that the first wave of the SARS-CoV-2 pandemic peaked before the end of July 2020 in the major urban counties, with 30-50% of residents infected. Our analysis suggests, first, that the reported low COVID-19 disease burden in Kenya cannot be explained solely by limited spread of the virus, and second, that a 30-50% attack rate was not sufficient to avoid a further wave of transmission.

5.
PLOS Glob Public Health ; 2(8): e0000883, 2022.
Article in English | MEDLINE | ID: covidwho-2039242

ABSTRACT

BACKGROUND: Most of the studies that have informed the public health response to the COVID-19 pandemic in Kenya have relied on samples that are not representative of the general population. We conducted population-based serosurveys at three Health and Demographic Surveillance Systems (HDSSs) to determine the cumulative incidence of infection with SARS-CoV-2. METHODS: We selected random age-stratified population-based samples at HDSSs in Kisumu, Nairobi and Kilifi, in Kenya. Blood samples were collected from participants between 01 Dec 2020 and 27 May 2021. No participant had received a COVID-19 vaccine. We tested for IgG antibodies to SARS-CoV-2 spike protein using ELISA. Locally-validated assay sensitivity and specificity were 93% (95% CI 88-96%) and 99% (95% CI 98-99.5%), respectively. We adjusted prevalence estimates using classical methods and Bayesian modelling to account for the sampling scheme and assay performance. RESULTS: We recruited 2,559 individuals from the three HDSS sites, median age (IQR) 27 (10-78) years and 52% were female. Seroprevalence at all three sites rose steadily during the study period. In Kisumu, Nairobi and Kilifi, seroprevalences (95% CI) at the beginning of the study were 36.0% (28.2-44.4%), 32.4% (23.1-42.4%), and 14.5% (9.1-21%), and respectively; at the end they were 42.0% (34.7-50.0%), 50.2% (39.7-61.1%), and 24.7% (17.5-32.6%), respectively. Seroprevalence was substantially lower among children (<16 years) than among adults at all three sites (p≤0.001). CONCLUSION: By May 2021 in three broadly representative populations of unvaccinated individuals in Kenya, seroprevalence of anti-SARS-CoV-2 IgG was 25-50%. There was wide variation in cumulative incidence by location and age.

6.
BMJ Glob Health ; 7(8)2022 08.
Article in English | MEDLINE | ID: covidwho-1968240

ABSTRACT

BACKGROUND: A few studies have assessed the epidemiological impact and the cost-effectiveness of COVID-19 vaccines in settings where most of the population had been exposed to SARS-CoV-2 infection. METHODS: We conducted a cost-effectiveness analysis of COVID-19 vaccine in Kenya from a societal perspective over a 1.5-year time frame. An age-structured transmission model assumed at least 80% of the population to have prior natural immunity when an immune escape variant was introduced. We examine the effect of slow (18 months) or rapid (6 months) vaccine roll-out with vaccine coverage of 30%, 50% or 70% of the adult (>18 years) population prioritising roll-out in those over 50-years (80% uptake in all scenarios). Cost data were obtained from primary analyses. We assumed vaccine procurement at US$7 per dose and vaccine delivery costs of US$3.90-US$6.11 per dose. The cost-effectiveness threshold was US$919.11. FINDINGS: Slow roll-out at 30% coverage largely targets those over 50 years and resulted in 54% fewer deaths (8132 (7914-8373)) than no vaccination and was cost saving (incremental cost-effectiveness ratio, ICER=US$-1343 (US$-1345 to US$-1341) per disability-adjusted life-year, DALY averted). Increasing coverage to 50% and 70%, further reduced deaths by 12% (810 (757-872) and 5% (282 (251-317) but was not cost-effective, using Kenya's cost-effectiveness threshold (US$919.11). Rapid roll-out with 30% coverage averted 63% more deaths and was more cost-saving (ICER=US$-1607 (US$-1609 to US$-1604) per DALY averted) compared with slow roll-out at the same coverage level, but 50% and 70% coverage scenarios were not cost-effective. INTERPRETATION: With prior exposure partially protecting much of the Kenyan population, vaccination of young adults may no longer be cost-effective.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , Cost-Benefit Analysis , Humans , Kenya/epidemiology , SARS-CoV-2 , Young Adult
7.
Viruses ; 14(6)2022 06 16.
Article in English | MEDLINE | ID: covidwho-1911642

ABSTRACT

Seychelles, an archipelago of 155 islands in the Indian Ocean, had confirmed 24,788 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the 31st of December 2021. The first SARS-CoV-2 cases in Seychelles were reported on the 14th of March 2020, but cases remained low until January 2021, when a surge was observed. Here, we investigated the potential drivers of the surge by genomic analysis of 1056 SARS-CoV-2 positive samples collected in Seychelles between 14 March 2020 and 31 December 2021. The Seychelles genomes were classified into 32 Pango lineages, 1042 of which fell within four variants of concern, i.e., Alpha, Beta, Delta and Omicron. Sporadic cases of SARS-CoV-2 detected in Seychelles in 2020 were mainly of lineage B.1 (lineage predominantly observed in Europe) but this lineage was rapidly replaced by Beta variant starting January 2021, and which was also subsequently replaced by the Delta variant in May 2021 that dominated till November 2021 when Omicron cases were identified. Using the ancestral state reconstruction approach, we estimated that at least 78 independent SARS-CoV-2 introduction events occurred in Seychelles during the study period. The majority of viral introductions into Seychelles occurred in 2021, despite substantial COVID-19 restrictions in place during this period. We conclude that the surge of SARS-CoV-2 cases in Seychelles in January 2021 was primarily due to the introduction of more transmissible SARS-CoV-2 variants into the islands.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genomics , Humans , SARS-CoV-2/genetics , Seychelles/epidemiology
8.
Elife ; 112022 06 14.
Article in English | MEDLINE | ID: covidwho-1893302

ABSTRACT

Background: Detailed understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) regional transmission networks within sub-Saharan Africa is key for guiding local public health interventions against the pandemic. Methods: Here, we analysed 1139 SARS-CoV-2 genomes from positive samples collected between March 2020 and February 2021 across six counties of Coastal Kenya (Mombasa, Kilifi, Taita Taveta, Kwale, Tana River, and Lamu) to infer virus introductions and local transmission patterns during the first two waves of infections. Virus importations were inferred using ancestral state reconstruction, and virus dispersal between counties was estimated using discrete phylogeographic analysis. Results: During Wave 1, 23 distinct Pango lineages were detected across the six counties, while during Wave 2, 29 lineages were detected; 9 of which occurred in both waves and 4 seemed to be Kenya specific (B.1.530, B.1.549, B.1.596.1, and N.8). Most of the sequenced infections belonged to lineage B.1 (n = 723, 63%), which predominated in both Wave 1 (73%, followed by lineages N.8 [6%] and B.1.1 [6%]) and Wave 2 (56%, followed by lineages B.1.549 [21%] and B.1.530 [5%]). Over the study period, we estimated 280 SARS-CoV-2 virus importations into Coastal Kenya. Mombasa City, a vital tourist and commercial centre for the region, was a major route for virus imports, most of which occurred during Wave 1, when many Coronavirus Disease 2019 (COVID-19) government restrictions were still in force. In Wave 2, inter-county transmission predominated, resulting in the emergence of local transmission chains and diversity. Conclusions: Our analysis supports moving COVID-19 control strategies in the region from a focus on international travel to strategies that will reduce local transmission. Funding: This work was funded by The Wellcome (grant numbers: 220985, 203077/Z/16/Z, 220977/Z/20/Z, and 222574/Z/21/Z) and the National Institute for Health and Care Research (NIHR), project references: 17/63/and 16/136/33 using UK Aid from the UK government to support global health research, The UK Foreign, Commonwealth and Development Office. The views expressed in this publication are those of the author(s) and not necessarily those of the funding agencies.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genomics , Humans , Kenya/epidemiology , Phylogeny , Retrospective Studies , SARS-CoV-2/genetics
9.
Wellcome Open Res ; 7: 69, 2022.
Article in English | MEDLINE | ID: covidwho-1835904

ABSTRACT

Background: There are limited studies in Africa describing the epidemiology, clinical characteristics and serostatus of individuals tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We tested routine samples from the Coastal part of Kenya between 17 th March 2020 and 30 th June 2021. Methods: SARS-CoV-2 infections identified using reverse transcription polymerase chain reaction (RT-PCR) and clinical surveillance data at the point of sample collection were used to classify as either symptomatic or asymptomatic. IgG antibodies were measured in sera samples, using a well validated in-house enzyme-linked immunosorbent assay (ELISA). Results: Mombasa accounted for 56.2% of all the 99,694 naso-pharyngeal/oro-pharyngeal swabs tested, and males constituted the majority tested (73.4%). A total of 7737 (7.7%) individuals were SARS-CoV-2 positive by RT-PCR. The majority (i.e., 92.4%) of the RT-PCR positive individuals were asymptomatic. Testing was dominated by mass screening and travellers, and even at health facility level 91.6% of tests were from individuals without symptoms. Out of the 97,124 tests from asymptomatic individuals 7,149 (7%) were positive and of the 2,568 symptomatic individuals 588 (23%) were positive. In total, 2458 serum samples were submitted with paired naso-pharyngeal/oro-pharyngeal samples and 45% of the RT-PCR positive samples and 20% of the RT-PCR negative samples were paired with positive serum samples. Symptomatic individuals had significantly higher antibody levels than asymptomatic individuals and become RT-PCR negative on repeat testing earlier than asymptomatic individuals. Conclusions: In conclusion, the majority of SARS-CoV-2 infections identified by routine testing in Coastal Kenya were asymptomatic. This reflects the testing practice of health services in Kenya, but also implies that asymptomatic infection is very common in the population. Symptomatic infection may be less common, or it may be that individuals do not present for testing when they have symptoms.

10.
Wellcome Open Res ; 5: 162, 2020.
Article in English | MEDLINE | ID: covidwho-1766169

ABSTRACT

Background: The COVID-19 pandemic relies on real-time polymerase chain reaction (qRT-PCR) for the detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), to facilitate roll-out of patient care and infection control measures. There are several qRT-PCR assays with little evidence on their comparability. We report alterations to the developers' recommendations to sustain the testing capability in a resource-limited setting. Methods: We used a SARS-CoV-2 positive control RNA sample to generate several 10-fold dilution series that were used for optimization and comparison of the performance of the four qRT-PCR assays: i) Charité Berlin primer-probe set, ii) European Virus Archive - GLOBAL (EVAg) primer-probe set, iii) DAAN premixed commercial kit and iv) Beijing Genomics Institute (BGI) premixed commercial kit. We adjusted the manufacturer- and protocol-recommended reaction component volumes for these assays and assessed the impact on cycle threshold (Ct) values. Results: The Berlin and EVAg E gene and RdRp assays reported mean Ct values within range of each other across the different titrations and with less than 5% difference. The DAAN premixed kit produced comparable Ct values across the titrations, while the BGI kit improved in performance following a reduction of the reaction components. Conclusion: We achieved a 2.6-fold and 4-fold increase in the number of tests per kit for the commercial kits and the primer-probe sets, respectively. All the assays had optimal performance when the primers and probes were used at 0.375X, except for the Berlin N gene assay. The DAAN kit was a reliable assay for primary screening of SARS-CoV-2 whereas the BGI kit's performance was dependent on the volumes and concentrations of both the reaction buffer and enzyme mix. Our recommendation for SARS-CoV-2 diagnostic testing in resource-limited settings is to optimize the assays available to establish the lowest volume and suitable concentration of reagents required to produce valid results.

11.
Wellcome open research ; 5:162, 2020.
Article in English | EuropePMC | ID: covidwho-1766168

ABSTRACT

Background: The global COVID-19 outbreak relies on a quantitative real-time polymerase chain reaction (qRT-PCR) for the detection of severe acute respiratory syndrome coronavirus (SARS-CoV-2), to facilitate the roll-out of patient care and infection control measures. There are several qRT-PCR assays with little evidence on their comparability. We report alterations to the developers' recommendations to sustain the testing capability in our setting, where the supply of testing reagents is limited. Methods: Standards generated from a serially-diluted positive control and previously identified positive/negative samples were used to determine the optimal volumes of the qRT-PCR reagents and to evaluate the validity and performance of four assays: Charité Berlin and European Virus Archive - GLOBAL (EVAg) primer-probe sets, and DAAN and Beijing Genomics Institute (BGI) premixed commercial kits. A multiplex and singleplex RT-PCR kit was used with the two primer-probe sets and the recommended assay volumes of the two premixed kits were altered. Results: In comparison to the multiplex RT-PCR kit, the singleplex RT-PCR kit combined with the primer-probe sets yielded consistent cycle threshold (Ct) values across the different titrations tested. The DAAN premixed kit produced comparable Ct values across the titrations, while the BGI kit showed incomparable Ct values and inconsistent results between batches using the manufacturer's recommended volumes. Conclusion: We achieved a 2.5-fold and 4-fold increase in the number of tests/kit for the premixed kits and the primer-probe sets, respectively. The primer-probe set assays were reliable and consistent, and we preferred a combination of an EVAg and a Berlin target. Any inconclusive result was repeated by different individuals following the same protocol. DAAN was a consistent and reliable assay even at lower concentrations from the stated recommendations. BGI in contrast, required dilution to improve its performance and was hence an assay that was used in combination with EVAg or Berlin targets.

12.
Front Med (Lausanne) ; 9: 836728, 2022.
Article in English | MEDLINE | ID: covidwho-1731800

ABSTRACT

INTRODUCTION: The ARTIC Network's primer set and amplicon-based protocol is one of the most widely used SARS-CoV-2 sequencing protocol. An update to the V3 primer set was released on 18th June 2021 to address amplicon drop-off observed among the Delta variant of concern. Here, we report on an in-house optimization of a modified version of the ARTIC Network V4 protocol that improves SARS-CoV-2 genome recovery in instances where the original V4 pooling strategy was characterized by amplicon drop-offs. METHODS: We utilized a matched set of 43 clinical samples and serially diluted positive controls that were amplified by ARTIC V3, V4 and optimized V4 primers and sequenced using GridION from the Oxford Nanopore Technologies'. RESULTS: We observed a 0.5% to 46% increase in genome recovery in 67% of the samples when using the original V4 pooling strategy compared to the V3 primers. Amplicon drop-offs at primer positions 23 and 90 were observed for all variants and positive controls. When using the optimized protocol, we observed a 60% improvement in genome recovery across all samples and an increase in the average depth in amplicon 23 and 90. Consequently, ≥95% of the genome was recovered in 72% (n = 31) of the samples. However, only 60-70% of the genomes could be recovered in samples that had <28% genome coverage with the ARTIC V3 primers. There was no statistically significant (p > 0.05) correlation between Ct value and genome recovery. CONCLUSION: Utilizing the ARTIC V4 primers, while increasing the primer concentrations for amplicons with drop-offs or low average read-depth, greatly improves genome recovery of Alpha, Beta, Delta, Eta and non-VOC/non-VOI SARS-CoV-2 variants.

13.
Clin Infect Dis ; 74(2): 288-293, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1662110

ABSTRACT

BACKGROUND: Few studies have assessed the seroprevalence of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among healthcare workers (HCWs) in Africa. We report findings from a survey among HCWs in 3 counties in Kenya. METHODS: We recruited 684 HCWs from Kilifi (rural), Busia (rural), and Nairobi (urban) counties. The serosurvey was conducted between 30 July and 4 December 2020. We tested for immunoglobulin G antibodies to SARS-CoV-2 spike protein, using enzyme-linked immunosorbent assay. Assay sensitivity and specificity were 92.7 (95% CI, 87.9-96.1) and 99.0% (95% CI, 98.1-99.5), respectively. We adjusted prevalence estimates, using bayesian modeling to account for assay performance. RESULTS: The crude overall seroprevalence was 19.7% (135 of 684). After adjustment for assay performance, seroprevalence was 20.8% (95% credible interval, 17.5%-24.4%). Seroprevalence varied significantly (P < .001) by site: 43.8% (95% credible interval, 35.8%-52.2%) in Nairobi, 12.6% (8.8%-17.1%) in Busia and 11.5% (7.2%-17.6%) in Kilifi. In a multivariable model controlling for age, sex, and site, professional cadre was not associated with differences in seroprevalence. CONCLUSION: These initial data demonstrate a high seroprevalence of antibodies to SARS-CoV-2 among HCWs in Kenya. There was significant variation in seroprevalence by region, but not by cadre.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Bayes Theorem , Health Personnel , Humans , Kenya/epidemiology , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus
14.
Science ; 374(6570): 989-994, 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1526450

ABSTRACT

Policy decisions on COVID-19 interventions should be informed by a local, regional and national understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Epidemic waves may result when restrictions are lifted or poorly adhered to, variants with new phenotypic properties successfully invade, or infection spreads to susceptible subpopulations. Three COVID-19 epidemic waves have been observed in Kenya. Using a mechanistic mathematical model, we explain the first two distinct waves by differences in contact rates in high and low social-economic groups, and the third wave by the introduction of higher-transmissibility variants. Reopening schools led to a minor increase in transmission between the second and third waves. Socioeconomic and urban­rural population structure are critical determinants of viral transmission in Kenya.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , COVID-19 Nucleic Acid Testing , Communicable Disease Control , Epidemics , Humans , Incidence , Kenya/epidemiology , Models, Biological , Seroepidemiologic Studies , Social Class , Socioeconomic Factors
15.
Open Forum Infect Dis ; 8(7): ofab314, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1361796

ABSTRACT

In October 2020, anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G seroprevalence among truck drivers and their assistants (TDA) in Kenya was 42.3%, higher than among healthcare workers and blood donors. Truck drivers and their assistants transport essential supplies during the coronavirus disease 2019 pandemic, placing them at increased risk of being infected and of transmitting SARS-CoV-2 over a wide geographical area.

16.
Nat Commun ; 12(1): 4809, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1351953

ABSTRACT

Genomic surveillance of SARS-CoV-2 is important for understanding both the evolution and the patterns of local and global transmission. Here, we generated 311 SARS-CoV-2 genomes from samples collected in coastal Kenya between 17th March and 31st July 2020. We estimated multiple independent SARS-CoV-2 introductions into the region were primarily of European origin, although introductions could have come through neighbouring countries. Lineage B.1 accounted for 74% of sequenced cases. Lineages A, B and B.4 were detected in screened individuals at the Kenya-Tanzania border or returning travellers. Though multiple lineages were introduced into coastal Kenya following the initial confirmed case, none showed extensive local expansion other than lineage B.1. International points of entry were important conduits of SARS-CoV-2 importations into coastal Kenya and early public health responses prevented established transmission of some lineages. Undetected introductions through points of entry including imports from elsewhere in the country gave rise to the local epidemic at the Kenyan coast.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Genome, Viral , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/transmission , Child , Child, Preschool , Female , Genetic Variation , Humans , Infant , Kenya/epidemiology , Male , Middle Aged , Pandemics , Phylogeny , Public Health , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Sequence Analysis , Tanzania , Travel , Young Adult
17.
Virol J ; 18(1): 104, 2021 05 29.
Article in English | MEDLINE | ID: covidwho-1257951

ABSTRACT

BACKGROUND: Human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) are leading causes of viral severe acute respiratory illnesses in childhood. Both the two viruses belong to the Pneumoviridae family and show overlapping clinical, epidemiological and transmission features. However, it is unknown whether these two viruses have similar geographic spread patterns which may inform designing and evaluating their epidemic control measures. METHODS: We conducted comparative phylogenetic and phylogeographic analyses to explore the spatial-temporal patterns of HMPV and RSV across Africa using 232 HMPV and 842 RSV attachment (G) glycoprotein gene sequences obtained from 5 countries (The Gambia, Zambia, Mali, South Africa, and Kenya) between August 2011 and January 2014. RESULTS: Phylogeographic analyses found frequently similar patterns of spread of RSV and HMPV. Viral sequences commonly clustered by region, i.e., West Africa (Mali, Gambia), East Africa (Kenya) and Southern Africa (Zambia, South Africa), and similar genotype dominance patterns were observed between neighbouring countries. Both HMPV and RSV country epidemics were characterized by co-circulation of multiple genotypes. Sequences from different African sub-regions (East, West and Southern Africa) fell into separate clusters interspersed with sequences from other countries globally. CONCLUSION: The spatial clustering patterns of viral sequences and genotype dominance patterns observed in our analysis suggests strong regional links and predominant local transmission. The geographical clustering further suggests independent introduction of HMPV and RSV variants in Africa from the global pool, and local regional diversification.


Subject(s)
Metapneumovirus , Paramyxoviridae Infections , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Africa/epidemiology , Humans , Metapneumovirus/genetics , Paramyxoviridae Infections/epidemiology , Phylogeny , Phylogeography , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus, Human/genetics , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Spatio-Temporal Analysis
18.
Wellcome Open Res ; 5: 150, 2020.
Article in English | MEDLINE | ID: covidwho-1024795

ABSTRACT

Introduction: Human coronaviruses (HCoVs) circulate endemically in human populations, often with seasonal variation. We describe the long-term patterns of paediatric disease associated with three of these viruses, HCoV-NL63, OC43 and 229E, in coastal Kenya. Methods: Continuous surveillance of pneumonia admissions was conducted at the Kilifi county hospital (KCH) located in the northern coastal region of Kenya. Children aged <5 years admitted to KCH with clinically defined syndromic severe or very severe pneumonia were recruited. Respiratory samples were taken and tested for 15 virus targets, using real-time polymerase chain reaction. Unadjusted odds ratios were used to estimate the association between demographic and clinical characteristics and HCoV positivity. Results: From 2007 to 2019, we observed 11,445 pneumonia admissions, of which 314 (3.9%) tested positive for at least one HCoV type. There were 129 (41.1%) OC43, 99 (31.5%) 229E, 74 (23.6%) NL63 positive cases and 12 (3.8%) cases of HCoV to HCoV coinfection.  Among HCoV positive cases, 47% (n=147) were coinfected with other respiratory virus pathogens. The majority of HCoV cases were among children aged <1 year (66%, n=208), though there was no age-dependence in the proportion testing positive. HCoV-OC43 was predominant of the three HCoV types throughout the surveillance period. Evidence for seasonality was not identified. Conclusions: Overall, 4% of paediatric pneumonia admissions were associated with three endemic HCoVs, with a high proportion of cases co-occurring with another respiratory virus, with no clear seasonal pattern, and with the age-distribution of cases following that of pneumonia admissions (i.e. highest in infants). These observations suggest, at most, a small severe disease contribution of endemic HCoVs in this tropical setting and offer insight into the potential future burden and epidemiological characteristics of SARS-CoV-2.

19.
Science ; 371(6524): 79-82, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-920888

ABSTRACT

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Africa is poorly described. The first case of SARS-CoV-2 in Kenya was reported on 12 March 2020, and an overwhelming number of cases and deaths were expected, but by 31 July 2020, there were only 20,636 cases and 341 deaths. However, the extent of SARS-CoV-2 exposure in the community remains unknown. We determined the prevalence of anti-SARS-CoV-2 immunoglobulin G among blood donors in Kenya in April-June 2020. Crude seroprevalence was 5.6% (174 of 3098). Population-weighted, test-performance-adjusted national seroprevalence was 4.3% (95% confidence interval, 2.9 to 5.8%) and was highest in urban counties Mombasa (8.0%), Nairobi (7.3%), and Kisumu (5.5%). SARS-CoV-2 exposure is more extensive than indicated by case-based surveillance, and these results will help guide the pandemic response in Kenya and across Africa.


Subject(s)
Antibodies, Viral/blood , Blood Donors , COVID-19/epidemiology , Immunoglobulin G/blood , Adolescent , Adult , Aged , Communicable Disease Control , Humans , Kenya/epidemiology , Middle Aged , SARS-CoV-2/physiology , Seroepidemiologic Studies , Young Adult
20.
Virus Evol ; 6(1): veaa031, 2020 Jan.
Article in English | MEDLINE | ID: covidwho-820021

ABSTRACT

Human coronavirus OC43 (HCoV-OC43) is a major contributor to seasonal outbreaks of acute respiratory illness (ARI). The origins of locally circulating HCoV-OC43 strains and characteristics of their genetic diversity are unknown for most settings despite significance to effective HCoV control strategies. Between December 2015 and June 2016, we undertook ARI surveillance in coastal Kenya in nine outpatients and one inpatient health facility (HF). Ninety-two patient samples tested HCoV-OC43 positive and forty (43.5%) were successfully sequenced in spike (S) gene region (2,864 long, ∼70%). Phylogenetic analysis confirmed co-circulation of two distinct HCoV-OC43 clades that closely clustered with genotype G (n = 34, 85%) and genotype H (n = 6, 15%) reference strains. Local viruses within the same clade displayed low genetic diversity yielding identical sequences in multiple HF. Furthermore, the newly sequenced Kenyan viruses showed close phylogenetic relationship to other contemporaneous sampled strains (2015-16) including those originating from distant places (e.g. USA and China). Using a genetic similarity threshold of 99.1 per cent at nucleotide level, the HCoV-OC43 strains sampled globally between 1967 and 2019 fell into nine sequence clusters. Notably, some of these clusters appeared to have become extinct, or occurred only sporadically in a few geographical areas while others persisted globally for multiple years. In conclusion, we found that HCoV-OC43 strains spread rapidly both locally and across the globe with limited genetic evolution in the spike gene. Full-genome sequences that are spatio-temporally representative are required to advance understanding of the transmission pathways of this important human respiratory pathogen.

SELECTION OF CITATIONS
SEARCH DETAIL